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ABSTRACT: NIOSH research has focused on the monitoring and the control of methane levels in 
active mine workings. Response times for instrumentation using catalytic heat-of-combustion sen
sor technology were evaluated. NIOSH research has modelled the flow of methane gas onto long-
wall faces and gobs, developed engineering controls to limit methane levels during mining, and de
signed coalbed and gob degasification systems. Available methane control systems have been chal
lenged by recent developments in longwall and room-and-pillar mining systems. This includes in
creased face advance rates leading to increased productivities, increased longwall panel sizes, and 
the generally deeper workings of U.S. coal mines. The potentially violent nature of any underground 
explosion or ignition requires the measurement, control, and reduction of methane emissions into the 
mine environment for continued worker safety. 

1. INTRODUCTION 

The liberation of methane into underground workings occurs continuously in all coal mining opera
tions. Early attempts to prevent explosions resulting from the ignition of methane gas resulted in 
safer explosives, closed lights for illumination, and the development of permissible electrical equip
ment. Since the middle of the last century, research to prevent explosions and ignitions has focused 
on controlling the concentrations of methane in active mine workings. Figure 1 shows the injuries 
and fatalities caused by explosions that have occurred in U.S. coal mines since 1990. 

Recent large scale methane explosions in the United States include the July 2000 event at the 
Willow Creek Mine in Utah (2 fatalities and 8 injuries), the September 2001 event at Jim Walter 
Resources No. 5 Mine in Alabama (13 fatalities and 3 injuries), and the January 2003 occurrence at 
the McElroy Mine in West Virginia (3 fatalities and 3 injuries). A frictional ignition in the gob of 
the Willow Creek Mine in Utah in November, 1998 is considered the most likely source of a wide
spread mine fire that required the sealing of the mine. Other recent underground explosions have 
occurred at the Pinnacle Mine in West Virginia in the fall of 2003 and the frictional ignition and 
subsequent fire at the Buchanan No. 1 Mine in Virginia in February 2005. In January 2006, a me
thane explosion at the Sago Mine in West Virginia resulted in 12 fatalities and 1 injury. The Darby 
No. 1 Mine explosion in Kentucky in May 2006 led to 5 miners losing their lives. 

Available methane control systems have been challenged by recent developments in longwall 
and room-and-pillar mining systems. This includes increased face advance rates leading to increa
sed productivities, increased longwall panel dimensions, and the generally deeper workings of U.S. 
coal mines. The increasing coal productivities from longwall and room-and-pillar operations can 
lead to greater volumes of coalbed methane gas entering the underground mine environments from 



 

 

 
  

  
  

 
 

 
 

  
 
 

 
  

  
   

  
   

    
  

  
   

 
 

       

 
 

  
 

exposed coal surfaces and from cut coal on the conveyor belting. Production advances in under
ground coal mining can sometimes outpace existing systems for methane control. Due to the poten
tially violent nature of any underground explosion or ignition, control and reduction of methane 
emissions into the mine environment in necessary for continued worker safety. This paper provides 
a review of recent NIOSH research for monitoring and controlling face gas levels in longwall and 
room and pillar extraction systems. 
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Figure 1. Number of injuries and fatalities caused by explosions in underground coal mines 

2. NIOSH RESEARCH IN METHANE MONITORING 

To ensure the safety of underground coal mine workers, methanometers are mounted on continuous 
or longwall mining equipment to monitor methane levels. Machine-mounted methanometers are te
sted and approved by the Mine Safety and Health Administration (MSHA), the regulatory agency 
for the US mining industry. These monitors alert face workers when methane levels reach 1 pct and 
remove power to the mining equipment when levels reach 2 pct. 

The ability of a monitor to provide protection depends upon the accuracy of the reading and the 
response time of the device to changes in methane levels. Calibration procedures are specified by 
the equipment manufacturers and US mining law requires that mine operators check the calibration 
at least once every 31 days. Response times determine how quickly methanometer readings change 
to reflect current concentrations. When a mining machine begins to cut coal, the methane concen
trations at the face can rise and fall rapidly. If the methanometer response time is slow, the actual 
concentrations may be higher than the indicated readings. A monitor must not only measure the 
methane concentration accurately but must also respond quickly to changes in concentration in or
der to indicate a potentially hazardous condition. However, there are no criteria for measuring in
strument response times. 

Procedures for measuring such times were developed for use underground and in the laborato
ry. Work by Taylor et al. (2002) measured response times of three different catalytic heat of com



 

 

 
   

 
  

  
  

   
   

  
      

   
 

 
 

 
 

 
 
 

 
   

  
 

     
      

bustion type methanometers currently approved for underground use in the US. Using 2.5% cali
bration gas, they measured times ranging from 29 to 40 sec for a 90% response. The difference in 
response times between these instruments was attributed primarily to differences in the designs of 
the sensor heads. In these tests, gas was applied to the sensor head via a calibration cup which is ty
pically used underground to calibrate the sensors. However, this arrangement altered the normal 
flow of gas around and through the sensor head. Subsequent analyses by Taylor et al. (2004) used 
a test box to more accurately measure response times without the use of the calibration cup (Fig. 2). 
The test box provided a way to expose the sensor heads to gas in a way that more closely simulated 
underground flow conditions on a mining machine. Response times for the three monitors men
tioned in the earlier study varied from 23 to 29 sec for a 90% response to a 2.5% methane mix
ture. Although the researchers found that dust cap and flame arrester design did impact response 
time, no attempts were made to optimize their designs. 

Figure 2. Test box for determining response times (Taylor et al. 2004) 

3. NIOSH RESEARCH IN FACE EMISSIONS MODELING 

Variability in emissions on longwall faces can arise from changes in geologic conditions, changes 
in surface relief which can affect reservoir conditions, and changes in the mechanical behaviour of 
the overburden which can affect abutment pressures, fracture formations and permeabilities. Ele
vated methane levels can slow the cutting rate of the shearer or continuous miner to allow bleed-off 
of excess gas. One study noted more frequent methane-related delays when mining near the tailgate 
(Schatzel et al. 2006). 



 

 

    
    

   
 

 
  

    
 

  
       

 
 

 

  
   

  
  

  

   
    

  
 

   
  

 
 
 

 
       

       
  

 
    

  
  

    
 

  
      

   

     
 

These delays increased in number as the face moved to a maximum distance away from a bore
hole exhausting in the gob. Other studies showed more delays due to elevated gas levels when min
ing from the headgate to the tailgate (Krog et al. 2006). Despite the apparent abundance of data 
concerning methane levels on longwall faces, little published data exists on their effects on con
tinuous mining operations. 

Prior monitoring studies directed at longwall face emissions have indicated that only a small 
portion of the overall methane emission and gas production is emitted at the mine face (Diamond 
& Garcia 1999). However, these emissions can be critical in terms of underground safety. High pro
ductivities can elevate methane emissions along the longwall face making it difficult to meet statu
tory limits on methane concentrations. The current industry trend towards larger panels, particular
ly towards increasing face lengths, can present additional challenges for longwall face ventilation 
(Balusu et al. 2006, Schatzel et al. 2006). These include increased resistance to airflow and de
creased velocities at the tailgate leading to potential methane layering. Also, wider panels can lead 
to increased methane emissions from the exposed face and from the cut coal lying on the face con
veyor (Krog et al. 2006). 

A methodology developed by Diamond & Garcia (1999) predicted future methane emissions 
for two future 300 m faces based on emissions measured on current 230 m wide faces. Curves were 
fit to the actual emission data and then extrapolated to the 300 m face widths to predict methane 
emission rates on these longer faces. The data showed that the two faces would likely experience 
significantly different emission rate consequences in response to increasing their panel widths. Va
riabilities in mine design and methane control practices between the two sites were the primary cau
ses of the different predicted methane emissions rates. 

Other researchers produced similar empirical models of methane emissions, although some cau
tion was necessary in extrapolating these results to other sites. A data set was analyzed using two 
independent methods and many of the findings were consistent (Krog et al. 2006, Schatzel et al. 2006). 
Krog calculated methane emissions for a 480 m longwall face. These emissions were based on com
puted constants associated with specific methane sources (shearer, face conveyor, belt, background 
emissions from the coal face and background emissions from the adjoining ribs in the intake gate-
roads) and a zero time delay “idealized” longwall face pass of the shearer. Schatzel predicted lower 
face emission rates for a face length of 490 m by incorporating production delays and average 
emission rates in his calculations. 

4. NIOSH RESEARCH ON ENGINEERING CONTROLS 

Much of the work of the US Bureau of Mines and the National Institute for Occupational Safety 
and Health dealt with improving the flow of fresh air to the cutting faces on longwall and room
and-pillar mining systems. Historical overviews of ventilation designs for underground coal mining 
are given in Reed & Taylor (2007) and Kissell (2006). 

In addition to ventilation airflow, water sprays control methane levels on continuous and long-
wall mining operations by increasing the turbulence needed to improve mixing and dilution of the 
gas. Work conducted in a full-scale continuous miner test gallery showed the effects of water sprays 
on methane levels measured at the face (Taylor & Zimmer 2001). Four separate spray systems we
re tested. This included a top spray manifold above the cutter head with 10 sprays oriented toward 
the face, a similar manifold with 10 sprays oriented 30 degrees to the return side of the machine, 
a side spray manifold consisting of 4 sprays mounted vertically on the upwind side of the cutter head, 
and an underboom spray manifold consisting of 4 sprays mounted beneath the cutter boom. 

The results showed that the underboom spray manifold produced lower methane concentrations 
when used with the top sprays oriented toward the face, as opposed to 30 degrees to the return side. 



 

 

  
   

 
      

 
 

    
  

  
 

  
  

   
  

 
 

 
 

 
 

 
 
 
   

   

  
   

  

 
 

 

When operating the side spray manifold, the 30 degree-oriented sprays produced lower methane le
vels than the top sprays oriented toward the face. This was attributed to the angled top sprays pro
viding improved removal of the gas from the face area. When used with the underboom and side 
spray manifolds, no differences in average face gas concentrations were apparent with use of either 
top spray manifold. 

A series of laboratory evaluations examined the selection, placement, and operation of water 
sprays to control gas levels around a continuous mining machine (Goodman et al. 2006). This work 
evaluated the impacts of three different water spray configurations. The first was the standard spray 
system consisting of 24 sprays positioned above, below, and along the sides of the cutter head (Fig. 3). 
The second configuration added two external sprays approximately 4 m from the cutter head along 
the body of the continuous miner and on top of the cutting boom, while the third placed six additio
nal sprays under the cutting boom. Using sulfur hexafluoride as a surrogate for methane gas, con
centrations were measured on the left and right sides of the cutter head. The sprays design incorpo
rating the standard spray system plus the 4 external sprays provided the best control of face gas le
vels by increasing air velocity around the cutter head. This study did not recommend use of the un
derboom sprays because they increased gas concentrations. 

Figure 3. Water spray systems used in testing 

Water sprays on a longwall shearer are typically oriented in a “shearer-clearer” pattern using 
a combination of low pressure (410 kPa) sprays on the cutting drums and higher pressure (1030 kPa) 
sprays on the shearer body. This system, originally designed to control respirable dust, was impro
ved with the addition of two sprays on the headgate splitter arm and three sprays on the tailgate split
ter arms. These sprays forced the airflow toward the face side of the shearer body and then toward 
the downwind side of each cutting drum, flushing out methane accumulating in these areas (Kissell 
2006). 

5. NIOSH RESEARCH IN COAL BED AND GOB DEGASIFICATION 



 

 

 
 

 
  

   
 

    
  

 

   
 

  
 

    
  

  
  

 
  

     

    
 

    
      

 
  

   
  

     
  

  
 

 

  
  

 
 

 
 

 
 

  
 

  
  

 

Should increases in ventilation or changes in operational parameters be unable to control face gas 
levels, methane drainage remains the most viable option for mine operators. Most of the methane 
drainage applications in the United States have involved horizontal in-seam boreholes and vertical 
gob gas ventholes (GGV). Cross-measure boreholes have had limited application in the United Sta
tes, their use being more widespread in European operations. The history of methane drainage is 
quite extensive and has been well-documented in the literature (Diamond 1994, Thakur 2004). 

In-seam boreholes drilled from underground workings have been used to remove coalbed me
thane from both longwall faces and gateroad development entries. This technique has been applied 
widely in the US coal mining industry and has the advantage of controlling methane emissions in 
both areas. Successful application of this drainage technology still involves keeping the drilling pro
gress sufficiently ahead of mining activities such that the coal seam has adequate time to degas prior 
to extraction. 

In-seam boreholes can be oriented roughly parallel to the longwall face or can be directionally 
drilled perpendicular to the mine face (Fig. 4B). The impacts of borehole pattern and completion 
parameters were modeled (Karacan et al. 2007). This work showed that the most effective pattern 
for draining methane from a longwall panel was the tri-lateral arrangement that created three bran
ches off of a single borehole. The greatest reductions in methane emissions were achieved by dega
sifying before and during panel extraction. In-seam holes can also be drilled in the longwall block 
parallel to the developing gateroads to capture gas from the longwall panel that would otherwise 
migrate to gateroads and require dilution by ventilation air (Diamond 1994). These wells act as 
shields preventing the migration of methane from the surrounding roadways into the development 
entries. 

A reservoir model was developed to assess the impact of shielding boreholes on methane emis
sions rates during development of gateroad entries (Karacan 2007). The model included a three-en
try headgate and tailgate layout. A number of operational, geologic, and reservoir factors were inclu
ded in the model to assess their impacts on emissions and on the ventilation flow required to con
trol those emissions. The results showed that degasification using shielding boreholes decreased 
emissions 25% compared to the unshielded case. Shielding wells located close to the gateroads and 
operated for longer times were more effective in reducing methane inflows. Another study used an 
artificial neural network to design a coal bed degasification system using site- and mine-specific 
parameters (Karacan 2008). 

Vertical gob gas ventholes are drilled over longwall panels to drain gas from the gob as the pa
nel is extracted (Fig. 4A). The use of GGV’s is widespread in the US longwall coal mining indus
try and NIOSH has conducted considerable research to optimize their performances (Diamond 1994). 
For instance, increasing GGV diameter resulted in more methane production, although gas concen
tration could be diluted by the inclusion of more mine air. Locating the bottom of the GGV in the 
cave zone of the gob also removed mine ventilation air. Karacan et al. (2005) studied the effects of 
increasing face length on GGV performance. The performance and configuration of GGV’s can va
ry widely although these methane drainage boreholes generally undergo a peak production period 
shortly after undermining. The methane flow rate then declines and reaches a long production tail 
at a lower rate. The conventional design of GGV’s includes surface exhausters that produce a nega
tive pressure on the boreholes to enhance coalbed gas production. It is a widely-held industry belief 
that these methane drainage boreholes reduce emission rates at longwall faces, although no clear 
cut quantification of this effect has been documented. 

The use of coalbed methane drainage in room-and-pillar operations (mains and sub-mains) is 
less common than in longwall mining operations. Possible benefits of methane drainage include re
duced ventilation costs, a modest increase in coal reserves, and reduced cost due to a reduction in 
methane-related downtimes (Wang & Mutmansky 1999). However, methane drainage appears to 
be economic for a room-and-pillar operation only if the methane content of the coal is at least 19 
m3/tonne. As a comparison, the economic limit for methane drainage on a longwall operation is 12 



 

 

   
 

 
 
 

 
 
 

 
   

  
   

  

   
 

    
 

   
  

m3/tonne. Such estimates, however, made no allowances for variations in permeability, porosity, or 
other factors impacting gas production. 

Figure 4. Schematic representation of longwall mining environment 
and commonly used degasification borehole types (Karacan 2008) 

SUMMARY 

Available methane control systems have been challenged by recent developments in longwall and 
room-and-pillar mining systems including increases in panel dimensions, increased advance rates, 
and increased working depths. Due to the potentially violent nature of any underground explosion 
or ignition, control and reduction of methane emissions into the mine environment in necessary for 
continued worker safety. 

To ensure the safety of the nation’s underground mine workers, methanometers are placed on 
mining equipment to monitor gas levels during the shift. The protective capability of a methanome
ter depends upon the accuracy of that device and the response time as methane levels change dur
ing mining. NIOSH examined the response times of three methane monitors approved for under
ground use. Methane gas was initially introduced to each methanometer via a calibration cup atta
ched to the sensor head, a procedure found to provide an unrealistic assessment of response times. 



 

 

 
  

    
     

 
    

   
   

    

 
 

     
   

   
   

 
 

 
    

  
 

 
 

   
 

   
  

    

 
  

 
 

 

     
 

    
   

 
 

 
  

   

Subsequent testing introduced the methane gas into a large test box, a configuration that was deter
mined to more accurately mimic underground conditions. 

Past work showed that only a small percentage of the methane originated at the face area, with 
most of the gas coming from the gob area. NIOSH research identified those areas where methane 
control could be critical for longwall operations, i.e. mining towards the tailgate especially at a ma
ximal distance from a gob gas venthole. Models have been developed to predict both current and fu
ture methane emissions on longwalls. Some of the models were used to estimate emissions for wi
der longwall faces, a path that many coal operators are taking. 

Engineering controls have been extensively researched by NIOSH to control methane accumu
lations while mining. These have included the improved application of ventilation airflow to dilute 
and remove harmful gas levels and the development of more effective water sprays systems to in
crease mixing and turbulence. Such spray systems include the shearer clearer for longwall opera
tions and the use of top sprays, external sprays, and underboom sprays on continuous mining equip
ment. 

NIOSH has a long history of work in methane degasification involving the use of horizontal in
seam boreholes and vertical gob gas ventholes. Reservoir models have been used to assess the im
pacts of shielding boreholes on gateroad developments and to evaluate the effects of reservoir pa
rameters on emissions levels. This work has modelled the impacts of borehole pattern and design 
and the effects of increasing face length on gob gas venthole performance. 
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